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The stationary motion of active Brownian particles is studied by using the stochastic averaging method for
quasi-integrable Hamiltonian systems. First the stochastic averaging method for quasi-integrable Hamiltonian
systems is briefly introduced. Then the stationary solution of the dynamic equations governing an active Brown
particle in plane with the Rayleigh velocity-dependent friction model subject to Gaussian white noise excita-
tions is obtained by using the stochastic averaging method. The solution is validated by comparison with the
result from Monte Carlo simulation. Finally, two more stationary solutions of the dynamic equations governing
active Brownian particle with the Schienbein-Gruler and Erdmann velocity-dependent friction models, respec-
tively, subject to Gaussian white noise excitations are also given.
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I. INTRODUCTION

Active Brownian particles are Brownian particles with the
ability to store energy which can be used for active move-
ment. In the last decade, the theory of active Brownian par-
ticles has been developed rapidly[1–6] due to its potential
application to collective movement in biological and social
swarms. For example, self-driven motion of particles can be
observed in physicochemical systems[7]. In biological sys-
tems, ranging from cells[8,9] to higher organisms, such as
birds [10,11], self-driven motion can also be found. Even
human movement[12] and the movement to traffic systems
[13] can also be described as active motion.

The motion of active Brownian particles is usually de-
scribed by using Langevin equations, which can be modeled
as Stratonovich stochastic differential equations and then
converted into Itô stochastic differential equations by adding
Wong-Zakai correction terms. Usually, these equations can-
not be solved analytically unless they are linear. So, instead
of solving these equations, the associated Fokker-Planck
equation is solved. Recently, Ebelinget al. [14,15] proposed
a theory of canonical-dissipative systems and applied it to
active Brownian particles. The exact stationary solution of
the Fokker-Planck equation was obtained for some special
cases. However, canonical-dissipative systems are only a
subclass of the so-called stochastically excited and dissipated
Hamiltonian systems, for which a whole theoretical frame-
work has been established in the field of mechanics by one of
the present authors(W.Q.Z.) and his co-workers in the last
decade[16]. The theoretical framework includes three pro-
cedures for predicting the response of the systems, i.e., the
exact stationary solution[17–19], the equivalent nonlinear
system method[20–22] and the stochastic averaging method
for quasi-Hamiltonian systems[23–25]. The basic idea of
these procedures is that the functional form of the solution of

a stochastically excited and dissipated Hamiltonian system
depends upon the integrability and resonance of its associ-
ated Hamiltonian system. Five classes of solutions were ob-
tained by using these procedures for five groups of the sys-
tems: nonintegrable, integrable and nonresonant, integrable
and resonant, partially integrable and nonresonant, and par-
tially integrable and resonant.

As an application of the theory of stochastically excited
and dissipated Hamiltonian systems in the dynamics of ac-
tive Brownian particles, in this paper, the stationary behavior
of a Brownian particle in plane with Rayleigh, Schienbein-
Gruler, and Erdmann velocity-dependent friction models, re-
spectively, under Gaussian white noise excitations is studied
by using the stochastic averaging method for quasi-
integrable Hamiltonian systems. First, the concept of quasi-
integrable Hamiltonian systems, the stochastic averaging
method for them, and the stationary solution of the averaged
Fokker-Planck equation are introduced in Secs. II–IV, re-
spectively. Then the stationary solution of the dynamical
equations governing an active Brownian particle with Ray-
leigh velocity-dependent friction model subject to Gaussian
white noise excitations is obtained by using the stochastic
averaging method and verified by comparison with the result
from Monte Carlo simulation in Sec. V. The stationary solu-
tions for the dynamical equations describing an active Brown
particle with Schienbein-Gruler and Erdmann velocity-
dependent friction models are given in Sec. VI. It is shown
that the stochastic averaging method yields quite good ana-
lytical solution.

II. QUASI-INTEGRABLE HAMILTONIAN SYSTEMS

An n degree-of-freedom Hamiltonian dynamical system is
governed by the followingn pairs of Hamilton equations:

dqi

dt
=

] H

] pi
,

dpi

dt
= −

] H

] qi
, i = 1,2, . . . ,n, s1d

whereqi and pi are generalized displacements and general-
ized momenta, respectively;H=Hsq,pd is a Hamiltonian*Electronic address: zjudeng@yahoo.com.cn
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with continuous first-order derivatives. A Hamiltonian sys-
tem ofn degrees of freedom is said to be integrable or com-
pletely integrable if there existn independent integrals of the
motion H1=H ,H2, . . . ,Hn which are in involution. This last
term means that the Poisson bracket of any two integrals of
motion Hi andHj vanishes, i.e.,

fHi,Hjg =
] Hi

] pk

] Hj

] qk
−

] Hi

] qk

] Hj

] pk
= 0; i, j ,k = 1,2, . . . ,n.

s2d

A quasi-Hamiltonian system ofn degrees of freedom is
governed by the following equations of motion:

dqi

dt
=

] H8

] pi
, s3ad

dpi

dt
= −

] H8

] qi
− «cij

] H8

] pj
+ «1/2f ikjkstd,

i = 1,2, . . . ,n, k = 1,2, . . . ,m, s3bd

where H8=H8sq,pd is a twice differentiable Hamiltonian;
cij =cijsq,pd are differentiable functions;f ik= f iksq,pd are
twice differentiable functions;« is a small positive param-
eter; jk std are Gaussian white noises in the sense of Stra-
tonovich with correlation functions

Efjkstdjlst + tdg = 2Dkldstd, k,l = 1,2, . . . ,m. s4d

The second summation terms on the right-hand side of Eq.
s3bd may represent a set of lightly linear andsord nonlinear
friction forces while the third summation terms may include
weakly external andsord parametric excitations of Gaussian
white noise. Equationss3ad ands3bd can be modeled as Stra-
tonovich stochastic differential equations and then converted
into the following Itô stochastic differential equations:

dqi =
] H8

] pi
dt, s5ad

dpi = − S ] H8

] qi
+ «cij

] H8

] pj
− «Dklf jl

] f ik

] pJ
Ddt + «1/2sikdBkstd,

i, j = 1,2, . . . ,n, k,l = 1,2, . . . ,m, s5bd

where Bkstd are the standard Wiener processes andssT

=2 fDf T. The third summation terms on the right-hand side
of Eq. (5b) are known as the Wong-Zakai correction terms
[26]. These terms can usually be split into two parts: one has
the effect of modifying the conservative forces and the other
of modifying the friction forces. The first part can be com-
bined with ]H8 /]qi to form overall effective conservative
forces ]H /]qi with a modified HamiltonianH=Hsq,pdand
]H /]pi =]H8 /]pi. The second part may be combined with
«cij ]H8 /]pj to constitute effective friction forces
«mij ]H /]pj with mij =mijsq,pd. With these accomplished,
Eqs.(5a) and (5b) can be rewritten as

dqi =
] H

] pi
dt, s6ad

dpi = − S ] H

] qi
+ «mij

] H

] pj
Ddt + «1/2sikdBkstd,

i, j = 1,2, . . . ,n, k,l = 1,2, . . . ,m. s6bd

In the following it is assumed that the Hamiltonian system
governed by Eqs.(6a) and(6b) with «=0 is integrable. Then,
Eqs. (6a) and (6b) describe a quasi-integrable Hamiltonian
system.

III. STOCHASTIC AVERAGING METHOD FOR QUASI-
INTEGRABLE HAMILTONIAN SYSTEMS

Consider the quasi-integrable Hamiltonian system gov-
erned by Eqs.(6a) and (6b). Introduce the transformation

Hr = Hrsq,pd, Qr = Qrsq,pd, r = 1,2, . . . ,n, s7d

whereQr are angle variables. The Itô equations forHr and
Qr are obtained from Eqs.s6ad and s6bd by using transfor-
mation s7d and the Itô differential rulef27g as follows:

dHr = «S− mij
] H

] pj

] Hr

] pi
+ Dklf ikf jl

]2Hr

] pi ] pj
Ddt

+ «1/2] Hr

] pi
sikdBkstd, s8ad

dQr = Svr − «mij
] H

] pj

] Qr

] pi
+ «Dklf ikf jl

]2Qr

] pi ] pj
Ddt

+ «1/2] Qr

] pi
sikdBkstd, s8bd

whereqi andpi on the right-hand side of Eqs.(8a) and (8b)
should be replaced byHr and Qr in terms of Eq.(7). The
form and dimension of the stochastic averaging equations of
a quasi-integrable Hamiltonian system depend on whether
the associated Hamiltonian system is resonant or not.

In the nonresonant caseQ1,Q2, . . . ,Qn in Eq. (8b) are
rapidly varying processes whileH1,H2, . . . ,Hn in Eq. (8a)
are slowly varying ones. According to a theorem due to
Khasminskii [28], the Hr converge weakly to an
n-dimensional diffusion process as«→0 in a time interval
0ø tøT, whereT,0s«−1d. In other words, theHr may be
replaced in the first approximation by ann-dimensional dif-
fusion process for small«. For simplicity, the same symbol
Hr will be used to denote therth component of this diffusion
process.

The averaged Itô equations for thisn-dimensional diffu-
sion process are obtained by applying time averaging to Eq.
(8a) under the condition that theHr on the right-hand side of
Eq. (8a) is kept constant. The time averaging can be replaced
by phase space averaging overQrsr =1,2, . . . ,nd since the
motion of the associated Hamiltonian system on the constant
Hrsr =1,2, . . . ,nd surface is ergodic. Thus, the averaged Itô
equations forHr are of the form
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dHr = «UrsHddt + «1/2VrksHddBkstd, r = 1,2, . . . ,n,

k = 1,2, . . . ,m, s9d

and the averaged Fokker-Planck equation associated with
Eq. s9d is

] p

] t
= «H−

]

] Hr
farsHdpg +

1

2

]2

] Hr ] Hs
fbrssHdpgJ s10d

whereH =fH1,H2, . . . ,HngT,

arsHd = UrsHd =K− mij
] H

] pj

] Hr

] pi
+ Dklf ikf jl

]2Hr

] pi ] pj
L ,

s11ad

brssHd = VrkVsk=K2Dklf ikf jl
] Hr

] pi

] Hs

] pj
L ,

r,s,i, j = 1,2, . . . ,n, k,l = 1,2, . . . ,m, s11bd

and

k·l =
1

s2pdnE
0

2p

s·ddu1du2 ¯ dun s12d

denotes an averaging operator. In Eq.s10d, p=psH ,t uH0d
with initial condition

psH,0uH0d = dsH − H0d s13d

or p=psH ,td with initial condition

psH,0d = psH0d, s14d

depending upon whether an initial state or an initial probabil-
ity density is specified. The Fokker-Planck equations10d is
also subjected to appropriate boundary conditions,

− arsHdp +
1

2

]

] Hs
fbrssHdpg = 0, r,s= 1,2, . . . ,n, H P S,

s15d

which imply vanishing probability flows inn directions at
the boundary.

It is resonant case if there exist the followingas1øa
øn−1d resonant relations:

kr
uvr = 0s«d, u = 1,2, . . . ,a, r = 1,2, . . . ,n. s16d

Introducea combinationsfu or angle variables

fu = kr
uQr, u = 1,2, . . . ,a, r = 1,2, . . . ,n. s17d

The Itô equations forfu can be obtained through appropriate
combinations of Eq.s8bd as follows:

dfu = S0s«d − «mij
] H

] pj

] fu

] pi
+ «Dklf ikf jl

]2fu

] pi ] pj
Ddt

+
] fu

] pi
sikdBkstd. s18d

It is seen from Eqs.s8ad, s8bd, and s18d that H1,H2, . . . ,Hn

and f1,f2, . . . ,fa are slowly varying process while
Q1,Q2, . . . ,Qn−a are rapidly varying process. Based on the
Khasminskii theoremf28g, the Hr and fu converge to an
sn+ad-dimensional diffusion process as«→0 in a time in-
terval 0ø tøT, whereT,0s«−1d.

The Itô equations for thissn+ad-dimensional diffusion
process are obtained by applying time averaging to Eqs.(8a)
and (18) under the condition thatHr ,fu on the right-hand
sides are regarded as constant. For a similar reason as in the
nonresonant case, this time averaging can be replaced by
phase space averaging with respect toQ1,Q2, . . . ,Qn−a.
Thus, we obtain the following averaged Fokker-Planck equa-
tion:

] p

] t
= «H−

]

] Hr
farsH,Fdpg −

]

] fu
fausH,Fdpg

+
1

2

]2

] Hr ] Hs
fbrssH,Fdpg +

1

2

]2

] Hr ] fu
fbrusH,Fdpg

+
1

2

]2

] fu ] Hr
fbursH,Fdpg +

1

2

]2

] fu ] fv
fbuvsH,FdpgJ

s19d

whereF=ff1,f2, . . . ,fagT,

ar =K− mij
] H

] pj

] Hr

] pi
+ Dklf ikf jl

]2Hr

] pi ] pj
L ,

brs =K2Dklf ikf jl
] Hr

] pi

] Hs

] pj
L ,

au =K0s«d − mij
] H

] pj

] fu

] pi
+ Dklf ikf jl

]2fu

] pi ] pj
L ,

bru =K2Dklf ikf jl
] Hr

] pi

] fu

] pj
L , s20d

buv =K2Dklf ikf jl
] fu

] pi

] fv

] pj
L, r,s,i, j = 1,2, . . . ,n,

u,v = 1,2, . . . ,a, k,l = 1,2, . . . ,m,

and

k·l =
1

s2pdn−aE
0

2p

s·ddu1du2 ¯ dun−a s21d

denotes an averaging operator. In Eq.s19d, p
=psH ,F ,tuH0,F0d with initial condition

psH,F,0uH0,F0d = dsH − H0ddsF − F0d s22d

or p=psH ,F ,td with initial condition

psH,F,0d = psH0,F0d. s23d

The averaged Fokker-Planck equations19d is also subjected
to appropriate boundary conditions. For example, the condi-
tions at the boundaryH PS are similar to those in Eq.s15d
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while those with respect tofu are thatp is a periodic func-
tion of fv with period 2p.

IV. STATIONARY SOLUTIONS OF AVERAGED FOKKER-
PLANCK EQUATIONS

One advantage of the stochastic averaging method for
quasi-integrable Hamiltonian systems introduced in the last
section is reducing the dimension of the equations from 2n to
n or n+a,2n. Another advantage of the stochastic averag-
ing method is simplifying the equations such that in the av-
eraged Fokker-Planck equation there is only potential prob-
ability flow and no circulatory probability flow. Under
boundary condition(15), the probability flow vanishes ev-
erywhere inside the boundary, that is, the averaged system
belongs to the class of stationary potentials and the exact
stationary solution of the averaged Fokker-Planck equation,
if it exists, can be obtained easily.

The stationary Fokker-Planck equation(10) with vanish-
ing time-derivative term under boundary condition(15) can
be further reduced to the followingn equations for vanishing
probability potential flow inn directions:

− arsHdp +
1

2

]

] Hs
fbrssHdpg = 0, r,s= 1,2, . . . ,n.

s24d

The solution of Eq.s24d is of the form

psHd = C expf− lsHdg, s25d

wherelsHd is the so-called probability potential andC is a
normalization constant. Substituting Eq.s25d into Eq. s24d,
one obtains

brs
] l

] Hs
=

] brs

] Hs
− 2ar, r,s= 1,2, . . . ,n. s26d

These aren first-order linear partial differential equations for
l as a function ofHr. If the matrixB=fbrsg is nonsingular, so
that its inverseB−1=G=fgrsg exists, then Eq.s26d may be
simplified to

] l

] Hs
= girS ] brs

] Hs
− 2arD . s27d

If the following compatibility conditions are satisfied:

] l

] Hi ] Hj
=

] l

] Hj ] Hi
, i, j = 1,2, . . . ,n, s28d

then a consistentl function can be obtained as follows:

lsHd =E
0

H1 ] l

] H1
dH1 +E

0

H2 ] l

] H2
dH2 + ¯ +E

0

Hn ] l

] Hn
dHn.

s29d

The exact stationary solutionpsHd of the averaged
Fokker-Planck Eq.(10) is then obtained by substituting Eq.
(29) into Eq. (25). The stationary probability density of gen-
eralized displacements and momenta can be derived from
Eq. (25) as follows:

psq,pd = psH,udU ] sH,ud
] sq,pd

U = psuuHdpsHdU ] sH,ud
] sq,pd

U
= C1psHd, s30d

whereu]sH ,ud /]sq,pdu is the absolute value of the Jacobian
determinant of the transformations7d and usually equal to a
constant. The stationary statistics, such as the marginal prob-
ability density, mean value, and mean-square value of gen-
eralized displacements and momenta, can be obtained from
Eq. s30d by definitions.

The exact stationary solution of the averaged Fokker-
Planck equation(19) is slightly more difficult to obtain[24].
Here one way suitable to the following application is given.
Obviously, if p satisfies the followingn+a first-order partial
differential equations, then it will be the stationary solution
of the averaged Fokker-Planck equation(19):

− arsH,Fdp +
1

2

]

] Hs
fbrssH,Fdpg +

1

2

]

] fu
fbrusH,Fdpg = 0,

s31d

− ausH,Fdp +
1

2

]

] Hr
fbursH,Fdpg +

1

2

]

] fv
fbuvsH,Fdpg = 0,

r,s= 1,2, . . . ,n, u,v = 1,2, . . . ,a.

Based on the boundary conditions in Eq.(15), the stationary
solution of Eq.(19) is assumed of the following form:

psH,Fd = C expf− lsH,Fdg. s32d

Substituting Eq.s32d into Eq. s31d, one obtains

brs
] l

] Hs
+ bru

] l

] fu
=

] brs

] Hs
+

] bru

] fu
− 2ar ,

bur
] l

] Hr
+ buv

] l

] fv
=

] bur

] Hr
+

] buv

] fv
− 2au. s33d

If the following compatibility conditions are satisfied:

] l

] Hr ] Hs
=

] l

] Hs ] Hr
,

] l

] Hr ] fv
=

] l

] fv ] Hr
,

] l

] fu ] fv
=

] l

] fv ] fu
, s34d

then a consistentl function can be obtained as follows:

lsH,Fd =E
0

Hr ] l

] Hr
dHr +E

0

fu ] l

] fu
] fu,

r = 1,2, . . . ,n, u = 1,2, . . . ,a. s35d

The stationary probability density of generalized displace-
ments and momenta can be derived from Eq.(32) as follows:

psq,pd = C2psH,Fd. s36d
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V. STATIONARY SOLUTION FOR RAYLEIGH
FRICTION MODEL

The motion of a Brownian particle with unit massm=1,
positionx,y, and velocityẋ, ẏ moving in a two-dimensional
parabolic potential subjected to Gaussian white noise excita-
tions is governed by the following equations:

ẍ + Fẋ + v2x = jxstd, ÿ + Fẏ + v2y = jystd, s37d

wherev is the oscillation frequency,F=Fsx,y, ẋ, ẏd is the
coefficient of active friction, andjxstd andjystd are indepen-
dent Gaussian white noises with correlation functions

Efjxstdjyst8dg = 0, Efjxstdjxst8dg = 2Ddst − t8d,

Efjystdjyst8dg = 2Ddst − t8d, s38d

where 2D is the strength of the Gaussian white noises. In the
case of thermal equilibrium, we may assume that the
fluctuation-dissipation theorem(Einstein relation) applies:
D=g0kBT/m, whereT is the temperature andkB is the Bolt-
zmann constant.

Generally, the friction coefficientF is a function of the
system statesx,y, ẋ, ẏd. In this paper, velocity-dependent
friction models F=FsÎẋ2+ ẏ2d, such as the Rayleigh,

Schienbein-Gruler, and Erdmann velocity-dependent friction
models are considered.

The Rayleigh velocity-dependent friction model is of the
form [29]

F = − g1 + g2sẋ2 + ẏ2d. s39d

For the case ofg1,g2.0, the passive motion of Brownian
particles could be changed into active motion. In the range of
small velocity, i.e., sÎẋ2+ ẏ2,Îg1/g2d, pumping due to
negative friction occurs as an additional source of energy.
Hence, slow particles are accelerated. On the other hand,
the motion of fast particles, i.e.,sÎẋ2+ ẏ2.Îg1/g2d, is
damped due to positive friction.

In the following it will be shown that using the stochastic
averaging method for quasi-integrable Hamiltonian systems,
one can obtain an analytical stationary solution for the
Fokker-Planck equation associated with the system(37).

Because of the unit massm=1, the generalized displace-
mentsq1,q2 and generalized momentap1,p2 in system(37)
are the same asx,y and ẋ, ẏ, respectively. Following the
derivation from Eqs.(3a) and(3b) to Eqs.(6a) and(6b), the
following Itô stochastic differential equations can be ob-
tained from system(37):

dx= ẋdt, dẋ= − hv2x + f− g1 + g2sẋ2 + ẏ2dgẋjdt + DdBxstd,

FIG. 1. Stationary probability densitypsx,yd of displacements
x,y of system(37) with Rayleigh friction model in the case far from
equilibrium(top) from simulation of Eq.(37) and(bottom) from the
analytical expression in Eq.(55). The parameters areg1=4, g2=1,
v=6, andD=1.

FIG. 2. Stationary probability densitypsẋ, ẏd of velocitiesẋ, ẏ of
system(37) with Rayleigh friction model in the case far from equi-
librium (top) from simulation of Eq.(37) and (bottom) from the
analytical expression in Eq.(55). The parameters are the same as
those in Fig. 1.
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dy= ẏdt, dẏ= − hv2y + f− g1 + g2sẋ2 + ẏ2dgẏjdt + DdBystd,

s40d

whereBxstd andBystd are the standard Wiener processes. The
Hamiltonian system associated with system(37) is integrable
with two independent integrals of motionHx andHy, i.e.,

Hx =
1

2
ẋ2 +

1

2
v2x2, Hy =

1

2
ẏ2 +

1

2
v2y2, s41d

which are in involution. Any other constant of motion can be
expressed in terms of these two motion integrals. For ex-
ample, the total energy or HamiltonianH and the angular
momentumL of systems37d can be expressed as follows:

H = Hx + Hy, L = ẋy − yẋ= kÎHxHy, s42d

wherek is a constant determined by the initial state of the
system.

Note that the natural frequencies in thex andy directions
are the same and a resonant relation(16) with k18=1, k28
=−1, and 0s«d=0 exists. So, in the case of light friction and
weak stochastic excitations, the stochastic averaging method
for quasi-integrable Hamiltonian systems with internal reso-
nance introduced in Sec. III should be applied to Eq.(40).
Introduce the angle variablesux anduy,

ux = tan−1S ẋ

vx
D, uy = tan−1S ẏ

vy
D . s43d

According to Eqs.s8ad ands8bd, the following Itô stochastic
differential equations forHx, Hy, ux, anduy can be obtained
from Eq. s40d:

dHx = h− f− g1 + g2sẋ2 + ẏ2dgẋ2 + Djdt + Î2DẋdBxstd,

dHy = h− f− g1 + g2sẋ2 + ẏ2dgẏ2 + Djdt + Î2DẏdBystd,

dux = Hv −
vf− g1 + g2sẋ2 + ẏ2dgxẋ

ẋ2 + v2x2 + D
2vxẋ

sẋ2 + v2x2d2Jdt

+
vx

ẋ2 + v2x2dBxstd,

duy = Hv −
vf− g1 + g2sẋ2 + ẏ2dgyẏ

ẏ2 + v2y2 + D
2vyẏ

sẏ2 + v2y2d2Jdt

+
vy

ẏ2 + v2y2dBystd. s44d

Let f=uy−ux. Following Eq. (19), the averaged Fokker-
Planck equation for Eq.(40) is

] p

] t
= −

]

] Hx
faxpg −

]

] Hy
faypg −

]

] f
fafpg +

1

2

]2

] Hx
2fbxxpg

+
1

2

]2

] Hy
2fbyypg +

1

2

]2

] f2fbffpg +
1

2

]2

] Hx ] Hy
fbxypg

+
1

2

]2

] Hx ] f
fbxfpg +

1

2

]2

] Hy ] Hx
fbyxpg

+
1

2

]2

] Hy ] f
fbyfpg +

1

2

]2

] f ] Hx
fbfxpg

FIG. 3. Stationary probability densitypsx, ẋd of displacementx
and velocityẋ of system(37) with Rayleigh friction model in the
case far from equilibrium(top) from simulation of Eq.(37) and
(bottom) from the analytical expression in Eq.(55). The parameters
are the same as those in Fig. 1.

FIG. 4. Stationary probability densitiespsxd of displacementx
andpsẋd of velocity ẋ of system(37) with Rayleigh friction model
in the case far from equilibrium. The parameters are the same as
those in Fig. 1.P, l denote the results from simulation of Eq.(37)
and — the analytical results in Eq.(55).
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+
1

2

]2

] f ] Hy
fbfypg, s45d

where

ax = k− f− g1 + g2sẋ2 + ẏ2dgẋ2 + Dl, bxx = k2Dẋ2l,

bxy = bxf = 0,

ay = k− f− g1 + g2sẋ2 + ẏ2dgẏ2 + Dl, byy = k2Dẏ2l,

byx = byf = 0,

af =K− f− g1 + g2sẋ2 + ẏ2dgS vyẏ

ẏ2 + v2y2 −
vxẋ

ẋ2 + v2x2D
+ 2DF vyẏ

sẏ2 + v2y2d2 −
vxẋ

sẋ2 + v2x2d2GL ,

bff =KF 2Dv2x2

sx2̇ + v2x2d2
+

2Dv2y2

sẏ2 + v2y2d2GL ,

bfx = bfy = 0, k·l =
1

2p
E

0

2p

s·ddux. s46d

To complete the averaging operation in Eq.(46), introduce
the following transformation:

x =
Î2Hx

v
cosux, ẋ = Î2Hxsin ux,

y =
Î2Hy

v
cossf + uxd, ẏ = Î2Hysin sf + uxd, s47d

which satisfy Eq.(41). The exact stationary solution of the
averaged Fokker-Planck equation(45), if it exists, is of the
form

psHx,Hy,fd = C expf− lsHx,Hy,fdg, s48d

whereC is a normalization constant and the probability po-
tential lsHx,Hy,fd is the solution of the following three lin-
ear partial differential equations:

bxx
] l

] Hx
= 2D − 2ax, byy

] l

] Hy
= 2D − 2ay,

bff

] l

] f
= − 2af. s49d

Equation(49) be simplified as follows:

] l

] Hx
=

1

2pDHx
E

0

2p

f− g1 + g2sẋ2 + ẏ2dgẋ2dux,

] l

] Hy
=

1

2pDHy
E

0

2p

f− g1 + g2sẋ2 + ẏ2dgẏ2dux,

] l

] f
=

vHxHy

pDsHx + Hyd
E

0

2p

f− g1 + g2sẋ2 + ẏ2dgS yẏ

Hy
−

xẋ

Hx
Ddux.

s50d

Finishing the integrals in Eq.(50), one obtains the following
expressions:

] l

] Hx
=

1

D
F− g1 +

3

2
g2Hx + g2S1 +

1

2
cos 2fDHyG ,

] l

] Hy
=

1

D
F− g1 +

3

2
g2Hy + g2S1 +

1

2
cos 2fDHxG ,

] l

] f
= −

1

D
g2HxHy sin 2f. s51d

To have an exact solution forl, the following compatibility
conditions must be satisfied:

]2l

] Hx ] Hy
=

]2l

] Hy ] Hx
,

]2l

] Hx ] f
=

]2l

] f ] Hx
,

]2l

] f ] Hy
=

]2l

] Hy ] f
. s52d

It is seen that the compatibility conditions in Eq.(52) are
satisfied spontaneously. Thus, the probability potentiall of
Eq. (48) is

lsHx,Hy,fd =
1

D
H− g1sHx + Hyd

+ g2F3

4
sHx

2 + Hy
2d + S1 +

1

2
cos 2fDHxHyGJ .

s53d

The stationary probability densitypsHx,Hy,fd is obtained
by substituting Eq.s53d into Eq.s48d and the stationary prob-
ability density of displacements and velocities, following Eq.
s36d, is

psx,y,ẋ,ẏd = C2 expf− lsHx,Hy,fdgHx=sẋ2+v2x2d / 2,Hy=sẏ2+v2y2d / 2,f=tan−1sẏ/vyd−tg−1sẋ/vxd, s54d
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whereC2 is a normalization constant. The other statistics of
the stationary motion of the systems37d can then be obtained
from Eq. s54d. For example, the marginal stationary prob-
ability densitiespsx,yd, psẋ, ẏd, psx, ẋd, psxd, andpsẋd can be
obtained as follows:

psx,yd =E
−`

` E
−`

`

psx,y,ẋ,ẏddẋ dẏ,

psẋ,ẏd =E
−`

` E
−`

`

psx,y,ẋ,ẏddx dy,

psx,ẋd =E
−`

` E
−`

`

psx,y,ẋ,ẏddy dẏ,

psxd =E
−`

` E
−`

` E
−`

`

psx,y,ẋ,ẏddẋ dy dẏ,

psẋd =E
−`

` E
−`

` E
−`

`

psx,y,ẋ,ẏddx dy dẏ. s55d

To check the accuracy of the results obtained by using the
stochastic averaging method, Monte Carlo simulation of the
Langevin equation(37) was performed. The sample func-
tions for independent Gaussian white noisesjxstd and jystd
were generated by using the Box-Muller method. Then, the
response of the system(37) was solved numerically by using
the fourth-order Runge-Kutta method with time step 0.02.
The long time solution after 60 000 steps was regarded as the
stationary ergodic response and taken to perform the statisti-
cal analysis for obtaining the probability densities.

Figures 1–5 show some numerical results for five mar-
ginal probability densities of the system(37) in the case of
far from equilibrium sg2=1,g1/g2=4d and in the case of
tending toward equilibriumsg2=1,g1/g2=−1d. The param-
eters are the same as those used in Ref.[30]. The validity of
the stationary solution(54) is verified by the excellent agree-
ment between the results from the stochastic averaging
method and those from digital simulation for both cases. It is

interesting to point out that the phenomenological bifurcation
of system(37) can be studied analytically by using Eqs.(54)
and (55).

VI. STATIONARY SOLUTIONS FOR SCHIENBEIN-
GRULER AND ERDMANN FRICTION MODELS

The stochastic averaging method for quasi-integrable
Hamiltonian systems is also applicable to the system(37)
with other velocity-dependent friction models. Replacing the
Rayleigh friction model with the following Schienbein-
Gruler velocity-dependent friction model[1]:

FsÎẋ2 + ẏ2d = g0S1 −
v0

Îẋ2 + ẏ2D s56d

which describes the active motion of different types of cell,
such as granulocytes, monocytes, and neural crest cells, and
by using the stochastic averaging method for quasi-
integrable Hamiltonian systems, one can obtain the follow-
ing joint stationary probability density of systems37d:

psx,y,ẋ,ẏd = C expUF−
g0

D
sHx + Hyd +

Î2v0g0

pD

3 E
0

2p

ÎHx sin2u + Hy sin2su + fdduGU
Hx=sẋ2+v2x2d / 2,Hy=sẏ2+v2y2d / 2,f=tan−1sẏ/vyd−tg−1sẋ/vxd

. s57d

Similarly, for systems37d with the Erdmann velocity-dependent friction modelf31g

FsÎẋ2 + ẏ2d = g0
sẋ2 + ẏ2 − v0

2d
sq0/g0d + sẋ2 + ẏ2 − v0

2d
s58d

the following joint stationary probability density of the systems37d can be obtained:

FIG. 5. Stationary probability densitiespsxd of displacementx
andpsẋd of velocity ẋ of system(37) with Rayleigh friction model
in the case tending toward equilibrium. The parameters areg1=
−1, g2=1, v=6, andD=1. P, l denote the results from simulation
of Eq. (37) and — the analytical results in Eq.(55).
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psx,y,ẋ,ẏd = UC expH−
g0

D
sHx + Hyd +

q0

2pD

3E
0

2p

lnfq0/g0 + 2Hx sin2u + 2Hy sin2su + fd − v0
2gduJU

Hx=sẋ2+v2x2d / 2,Hy=sẏ2+v2y2d / 2,f=tan−1sẏ/vyd−tg−1sẋ/vxd

.

s59d

It is noted that similar results as shown in Figs. 1–5 can be
obtained for the systems37d with Schienbein-Gruler and Er-
dmann friction models.

VII. CONCLUSIONS

In the present paper, the stochastic averaging method for
quasi-integrable Hamiltonian systems has been introduced
briefly and applied to obtain the stationary distribution for
the motion of active Brownian particles. The method can be
used to deal with a system with different kinds of friction
models both in cases far from equilibrium and tending to-
ward equilibrium. For three velocity-dependent friction mod-
els, i.e., the Rayleigh model, Schienbein-Gruler model, and

Erdmann model, the analytical solutions obtained agree well
with the results from Monte Carlo simulation. It should be
pointed out that the stochastic averaging method for quasi-
integrable Hamiltonian systems can also be extended to the
study of the motion of swarms of active Brownian particles
with global coupling and it will be the subject of our future
study.
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