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The stationary motion of active Brownian particles is studied by using the stochastic averaging method for
guasi-integrable Hamiltonian systems. First the stochastic averaging method for quasi-integrable Hamiltonian
systems is briefly introduced. Then the stationary solution of the dynamic equations governing an active Brown
particle in plane with the Rayleigh velocity-dependent friction model subject to Gaussian white noise excita-
tions is obtained by using the stochastic averaging method. The solution is validated by comparison with the
result from Monte Carlo simulation. Finally, two more stationary solutions of the dynamic equations governing
active Brownian particle with the Schienbein-Gruler and Erdmann velocity-dependent friction models, respec-
tively, subject to Gaussian white noise excitations are also given.
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I. INTRODUCTION a stochastically excited and dissipated Hamiltonian system
depends upon the integrability and resonance of its associ-
Active Brownian particles are Brownian particles with the agted Hamiltonian system. Five classes of solutions were ob-
ability to store energy which can be used for active move+tained by using these procedures for five groups of the sys-
ment. In the last decade, the theory of active Brownian partems: nonintegrable, integrable and nonresonant, integrable
ticles has been developed rapidfi-6] due to its potential and resonant, partially integrable and nonresonant, and par-
application to collective movement in biological and socialtially integrable and resonant.
swarms. For example, self-driven motion of particles can be As an application of the theory of stochastically excited
observed in physicochemical systefi@$. In biological sys- and dissipated Hamiltonian systems in the dynamics of ac-
tems, ranging from cell§8,9] to higher organisms, such as tive Brownian patrticles, in this paper, the stationary behavior
birds [10,17, self-driven motion can also be found. Even of a Brownian particle in plane with Rayleigh, Schienbein-
human movementl2] and the movement to traffic systems Gruler, and Erdmann velocity-dependent friction models, re-
[13] can also be described as active motion. spectively, under Gaussian white noise excitations is studied
The motion of active Brownian particles is usually de-by using the stochastic averaging method for quasi-
scribed by using Langevin equations, which can be modelethtegrable Hamiltonian systems. First, the concept of quasi-
as Stratonovich stochastic differential equations and theitegrable Hamiltonian systems, the stochastic averaging
converted into Itd stochastic differential equations by addingnethod for them, and the stationary solution of the averaged
Wong-Zakai correction terms. Usually, these equations canFokker-Planck equation are introduced in Secs. lI-IV, re-
not be solved analytically unless they are linear. So, insteadpectively. Then the stationary solution of the dynamical
of solving these equations, the associated Fokker-Planokquations governing an active Brownian particle with Ray-
equation is solved. Recently, Ebeliegal. [14,15 proposed leigh velocity-dependent friction model subject to Gaussian
a theory of canonical-dissipative systems and applied it tavhite noise excitations is obtained by using the stochastic
active Brownian particles. The exact stationary solution ofaveraging method and verified by comparison with the result
the Fokker-Planck equation was obtained for some specidgtom Monte Carlo simulation in Sec. V. The stationary solu-
cases. However, canonical-dissipative systems are only tions for the dynamical equations describing an active Brown
subclass of the so-called stochastically excited and dissipatgshrticle with Schienbein-Gruler and Erdmann velocity-
Hamiltonian systems, for which a whole theoretical frame-dependent friction models are given in Sec. VI. It is shown
work has been established in the field of mechanics by one aghat the stochastic averaging method yields quite good ana-
the present author@V.Q.Z.) and his co-workers in the last lytical solution.
decade[16]. The theoretical framework includes three pro-
cedures for predicting the response of the systems, i.e., the IIl. QUASI-INTEGRABLE HAMILTONIAN SYSTEMS
exact stationary solutiofl7-19, the equivalent nonlinear  An n degree-of-freedom Hamiltonian dynamical system is
system metho20-22 and the stochastic averaging method governed by the followingn pairs of Hamilton equations:
for quasi-Hamiltonian system23—-25. The basic idea of dg oH dp oM

these procedures is that the functional form of the solution of =—, = . i=1,2,...n, (1)
dt I p; dt d 0

whereq; and p; are generalized displacements and general-
*Electronic address: zjudeng@yahoo.com.cn ized momenta, respectivelyd=H(q,p) is a Hamiltonian
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with continuous first-order derivatives. A Hamiltonian sys- JH

tem ofn degrees of freedom is said to be integrable or com- dg = &—pdt, (63)
pletely integrable if there existindependent integrals of the !

motionH;=H,H,, ... H,, which are in involution. This last

term means that the Poisson bracket of any two integrals of dp =- ( gH + ey —— )dt+ 20, dB(1),

motion H; andH; vanishes, i.e., Jq;

oH, dH; JH; IH; ii= =
[Hi:Hj]:_l_l onjon; =0: i,j,k=1,2,...n. ihj=12,...n, kl=12,...m. (6b)

9Pk dGk 98I P In the following it is assumed that the Hamiltonian system

2 governed by Eqg6a@) and(6b) with e=0 is integrable. Then,
A quasi-Hamiltonian system ai degrees of freedom is Egs. (68 and (6b) describe a quasi-integrable Hamiltonian

governed by the following equations of motion: system.
dg _dH’ 3 lll. STOCHASTIC AVERAGING METHOD FOR QUASI-
dt  ap’ (3a) INTEGRABLE HAMILTONIAN SYSTEMS
Consider the quasi-integrable Hamiltonian system gov-
d JH’ JH’ erned by Eqs(6a) and(6b). Introduce the transformation
d_?:_T_SCij&_"'sllszgk(t) y EQ ( a) ( )
G Pj H =H/(qp), ©,=0.qp), r=12,...n, (7
i=1,2,...n k=1,2,...m (3b) where®, are angle variables. The Itd6 equations Ky and

0, are obtained from Eqg¢6a and (6b) by using transfor-
where H'=H’(q,p) is a twice differentiable Hamiltonian; mation(7) and the Itd differential rul¢27] as follows:
¢ =c;(q,p) are differentiable functionsf; =f,(q,p) are 5
PR . : . - dHIH, #H,
twice differentiable functionst is a small positive param- dH, = e{ -m;— + Dy fify———— |dt
eter; & (t) are Gaussian white noises in the sense of Stra- ap ap JP; I P
tonovich with correlation functions

2’ ikdBy(t), (8a)
E[&0&(t+D]=2Dy8(n), kl1=1,2,...m. (4 J p
The second summation terms on the right-hand side of Eq. PIYEY:) 20
(3b) may represent a set of lightly linear afar) nonlinear doe ‘( em; : Dk|fikfj|& &r )dt
friction forces while the third summation terms may include R Pi oP;
weakly external andor) parametric excitations of Gaussian 129 O;
white noise. Equation&a and(3b) can be modeled as Stra- te &_po-ikdBk(t)i (8b)
tonovich stochastic differential equations and then converted '
into the following 1t6 stochastic differential equations: whereq; andp; on the right-hand side of Eqe3a) and(8b)
should be replaced bi, and ®, in terms of Eq.(7). The
_dH’ form and dimension of the stochastic averaging equations of
in_a_pidt' (58) a quasi-integrable Hamiltonian system depend on whether

the associated Hamiltonian system is resonant or not.
b b In the nonresonant cas®,,0,,...,0, in Eq. (8b) are
dp =- (L +£Cj—— J nglfJI )dt+ e120, dB(1), rapidly varying processes whill;,H,, ... ,H, in Eq. (84)
Jq ay JdP; are slowly varying ones. According to a theorem due to
Khasminskii [28], the H, converge weakly to an
i,j=1,2,...n, kl=1,2,...m, (5p)  n-dimensional diffusion process as—0 in a time interval
0<t<T, whereT~0(¢™%). In other words, thed, may be
where By(t) are the standard Wiener processes angl’  replaced in the first approximation by ardimensional dif-
=2 fDf. The third summation terms on the right-hand sidefusion process for smal. For simplicity, the same symbol
of Eq. (5b) are known as the Wong-Zakai correction termsH, will be used to denote theh component of this diffusion
[26]. These terms can usually be split into two parts: one hagrocess.
the effect of modifying the conservative forces and the other The averaged It6 equations for thisdimensional diffu-
of modifying the friction forces. The first part can be com- sion process are obtained by applying time averaging to Eq.
bined with ¢H'/dq; to form overall effective conservative (8a) under the condition that thd, on the right-hand side of
forces dH/dq; with a modified HamiltoniarH=H(qg,p)and  Eq.(84) is kept constant. The time averaging can be replaced
dHlop,=0H'/dp,. The second part may be combined with by phase space averaging ov@f(r=1,2,... n) since the
eCjdH'/dp; to constitute effective friction forces motion of the associated Hamiltonian system on the constant
em;; dH/dp; with my;=m;(q,p). With these accomplished, H,(r=1,2,...n) surface is ergodic. Thus, the averaged Itd
Egs. (58 and(5b) can be rewritten as equations foH, are of the form
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dH, = eU,(H)dt+ eV, (H)dB(t), r=1,2,...n
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and ¢,,,,...,¢, are slowly varying process while
0,,0,,...,0,_, are rapidly varying process. Based on the

k=1,2,...m, © Khasminskii theoren{28], the H, and ¢, converge to an
and the averaged Fokker-Planck equation associated witffi+a)-dimensional diffusion process as—0 in a time in-
Eq. (9) is terval O<t<T, whereT~0(g™}).
5 The 1td equations for thign+a)-dimensional diffusion
(9_p (H)p] + d ———[b(H)p] (10) process are obtained by g_pplying time averaging to Bs.
at aH ZﬂH dHg and (18) under the condition thal,, ¢, on the right-hand
_ T sides are regarded as constant. For a similar reason as in the
whereH=[H,H,, ... H.]", e ;
nonresonant case, this time averaging can be replaced by
AH IH, #PH, phase space averaging with respect @9,0,,...,0,_,.
a(H)=U(H) = -my———+Dyfyfy——— /. Thus, we obtain the following averaged Fokker-Planck equa-
JP; I p; dpi 9P tion:
(119
Ip
— =g H,®
H, dHg at { aH, ¢U[a“( P]
rs(H) Vrkvsk_ 2Dk|flkfj| &p &p 2 1 &2
i ]
bs(H,®)p]+ ———[b;y(H,®
* 3 am, an s IPl+ 2y (. ©)p]
r,si,j=1,2,...n, kl=1,2,...m, (11b)
= b, (H, b, (H,®
and 2(?¢uf9Hr[ ur( )p] 2 ¢u [ UU( )p]}
2
19
(Y= 2 (-)d6,d6, - -- da, (12 (19
0 where®=[¢q, b5, ..., d,]",
with initial condition o a = TR bt 2P
r— m”z?p,z?p. kltik ”&pi&pj '
p(H,0[Hg) = 8(H - Ho) (13
- T . dH, dHg
or p=p(H,t) with initial condition Brs <2Dk|f|kf" >
I P ‘9pj
p(H,0) =p(Ho), (14
depending upon whether an initial state or an initial probabil- a,={ 0(e)-m, IHIPy - Py
ity density is specified. The Fokker-Planck equati{dg) is Vop, ap, KT p, ap;
also subjected to appropriate boundary conditions,
H, 0 ¢
19 _ _ by = { 2Dy e 220 20
—-a(H)p+ Ea_Hs[b’S(H)p]_o' rs=12,...n, Hes, < K g py apy (20)
15
o by = 2Dy fyfy L2008 =12
which imply vanishing probability flows im directions at kitiktjl ap ap; | J=54...n
the boundary. J
It is resonant case if there exist the followingl<« uo=12 ..a kl=12 ..m
<n-1) resonant relations:
and
kio,=0(e), u=12,..., r=12,...n. (16 .
Introducea combinationse, or angle variables ()= (277)”‘af (1)d6,d6, - - - db, 4 (21)
0

d=KO, u=12 ... r=12..n (17

denotes an averaging operator. In Eql9), p

The Itd equations for, can be obtained through appropriate =P(H,®,t|Hg, ®) with initial condition

combinations of Eq(8b) as follows:

IH I Py P,
(0(8)—8mjap ap SDkIflkaIﬁp ﬁp )dt
9¢

+ é,_piuo'ikdBk(t)- (18)

It is seen from Eqgs(8a), (8b), and(18) thatH;,H,, ... H,

P(H,®,0Hq,®g) = S(H — Hp) S(® - d) (22
or p=p(H,®,t) with initial condition
p(H,®,0) = p(Ho, Pg). (23

The averaged Fokker-Planck equatid®) is also subjected
to appropriate boundary conditions. For example, the condi-
tions at the boundaril € S are similar to those in Eq15)
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while those with respect t@, are thatp is a periodic func- d(H,0) d(H,0)
i i i (g,p) =p(H, 0 =p(OH)pH) | ———
tion of ¢, with period 2. pLa,p) =p 7(ap) p(6|H)p 7(q.p)
IV. STATIONARY SOLUTIONS OF AVERAGED FOKKER- =Cyp(H), (30)

PLANCK EQUATIONS where|d(H, 8)/4(q,p)| is the absolute value of the Jacobian

One advantage of the stochastic averaging method foleterminant of the transformatidid) and usually equal to a
quasi-integrable Hamiltonian systems introduced in the lasgonstant. The stationary statistics, such as the marginal prob-
section is reducing the dimension of the equations frorto2 ~ ability density, mean value, and mean-square value of gen-
n or n+a<2n. Another advantage of the stochastic averag-€ralized displacements and momenta, can be obtained from
ing method is simplifying the equations such that in the av-Ed. (30) by definitions.
eraged Fokker-Planck equation there is only potential prob- The exact stationary solution of the averaged Fokker-
ability flow and no circulatory probability flow. Under Planck equationl9) is slightly more difficult to obtairf24].
boundary condition(15), the probability flow vanishes ev- Here one way suitable to the following application is given.
erywhere inside the boundary, that is, the averaged systefbviously, if p satisfies the following+a first-order partial
belongs to the class of stationary potentials and the exaélifferential equations, then it will be the stationary solution
stationary solution of the averaged Fokker-Planck equatiorpf the averaged Fokker-Planck equatid®9):
if it exists, can be obtained easily.

The stationary Fokker-Planck equatigtO) with vanish-  _ 5 (4 @)p + }L[brs(H,‘D)p] + Ei[bm(H,d))p] =0,
ing time-derivative term under boundary conditickb) can 29Hs 29 ¢y
be further reduced to the followingequations for vanishing (30)
probability potential flow inn directions:
19 190 190
- - = = -a,(H,®)p+-——[by,(H,®)p] + -—[b,,(H,®)p] =0,
a,(H)p+ ZaHs[brS(H)p] 0, rs=1,2,...n. a,(H,®)p Z&Hr[ ur(H, ®@)p] 2(9%[ w(H, P)p]
(24)

i i r,s=12,...n, uv=12,... 0.
The solution of Eq(24) is of the form
Based on the boundary conditions in Ef}5), the stationary

p(H) =C exg - N (H)], (25 solution of Eq.(19) is assumed of the following form:
where\(H) is the so-called probability potential af@lis a H®)=C
L o . @) =C exd-AH,®)]. 32

normalization constant. Substituting E@5) into Eq. (24), P ) =M )] (32)
one obtains Substituting Eq(32) into Eq.(31), one obtains

AN Iby N IN  dbs b

—= -2a, r,s=1,2,...n. (26) b.o— +b,—=—2+—4_2g

I'S&HS &HS af I‘S&HS rug(ﬁu aHS a¢u T

These aren first-order linear partial differential equations for
\ as a function of,. If the matrixB =[b,¢] is nonsingular, so b N L O Ibyr , Iby _ 2 (33
that its inverseB1=G=[g,.] exists, then Eq(26) may be YoH, Mo, dH, d, A
simplified to

If the following compatibility conditions are satisfied:
N Jbys
Oir - 2a|. (27) IN N IN AN

oHs o\ gH, - , - ,
. Sy s . e (9H,(9HS (7HS(9H, (9H,(9(bu a¢vﬂHr
If the following compatibility conditions are satisfied:
AN JdN N AN
= . Lj=1,2,...n, (29) = : (34)
IHidH;  IH; IH, dpydd, db,ddy
then a consistent function can be obtained as follows: then a consistent function can be obtained as follows:
Hiogn H2 g\ Hn g\ Heogn Pu gN
AH) = ——dH +f ——dH +-~-+f dH,. AH, D :f dH +f J dus
o dH1  Jo 9H, 7 o dHy H®)= ] TR ), G, 7%
(29)
r=1,2,...n, u=1,2,...q. (35)

The exact stationary solutiop(H) of the averaged

Fokker-Planck Eq(10) is then obtained by substituting Eq. The stationary probability density of generalized displace-
(29) into Eq.(25). The stationary probability density of gen- ments and momenta can be derived from @B4) as follows:
eralized displacements and momenta can be derived from

Eq. (25) as follows: p(g,p) = Cop(H,@). (36)
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FIG. 1. Stationary probability densitp(x,y) of displacements FIG. 2. Stationary probability density(x,y) of velocitiesx,y of
X,y of system(37) with Rayleigh friction model in the case far from system(37) with Rayleigh friction model in the case far from equi-
equilibrium (top) from simulation of Eq(37) and(bottom) from the librium (top) from simulation of Eq.(37) and (bottom) from the
analytical expression in E¢55). The parameters arg =4, y,=1, analytical expression in Eq55). The parameters are the same as

=6, andD=1. those in Fig. 1.
V. STATIONARY SOLUTION FOR RAYLEIGH Schienbein-Gruler, and Erdmann velocity-dependent friction
FRICTION MODEL models are considered.
The Rayleigh velocity-dependent friction model is of the

The motion of a Brownian particle with unit mass=1,
positionx,y, and velocityx,y moving in a two-dimensional
parabolic potential subjected to Gaussian white noise excita-
tions is governed by the following equations:

form [29]

F=—m+7(¢+Y7). (39

For the case ofy;, y,>0, the passive motion of Brownian
particles could be changed into active motion. In the range of
small velocity, i.e., (VX*+y2<\y;/v,), pumping due to
negative friction occurs as an additional source of energy.
Hence, slow particles are accelerated. On the other hand,
the motion of fast particles, i.e(\}*+Y?>>\vy,/y,), is
N1 — N1 — 4 damped due to positive friction.
H&UE]=0, EEO&(T)]=2Dat-t), In the following it will be shown that using the stochastic
averaging method for quasi-integrable Hamiltonian systems,
E[&/(1)&/(t")]=2Da(t-t"), (38  one can obtain an analytical stationary solution for the
Fokker-Planck equation associated with the systgm.
where D is the strength of the Gaussian white noises. In the Because of the unit mass=1, the generalized displace-
case of thermal equilibrium, we may assume that thementsq,,q, and generalized momengs,p, in system(37)
fluctuation-dissipation theorenEinstein relation applies: are the same as,y and x,y, respectively. Following the
D=1yokgT/m, whereT is the temperature ari is the Bolt-  derivation from Eqs(3a) and(3b) to Egs.(6a) and(6b), the
zmann constant. following It6 stochastic differential equations can be ob-
Generally, the friction coefficienE is a function of the tained from systeng37):
system state(x,y,X,y). In this paper, velocity-dependent
friction models F=F(VX?+y?), such as the Rayleigh, dx=xdt dx=—{w?+[— 7, + 1(X*+y?)]x}dt+ DdB,(1),

X+Fx+o?X=&(1), J+Fy+o?y=§(1), (37

where w is the oscillation frequencyk=F(x,y,X,y) is the
coefficient of active friction, and,(t) and(t) are indepen-
dent Gaussian white noises with correlation functions
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FIG. 3. Stationary probability densify(x,x) of displacemenk
and velocityx of system(37) with Rayleigh friction model in the
case far from equilibrium(top) from simulation of Eq.(37) and
(bottom) from the analytical expression in EG5). The parameters
are the same as those in Fig. 1.

dy=ydt, dy=—{w?+[~y;+70(¢+y?)]y}dt+DdB/(1),
(40)

whereB,(t) andB,(t) are the standard Wiener processes. The
Hamiltonian system associated with syst7) is integrable
with two independent integrals of motidt#, andH,, i.e.,

1., 1
Hy= %%+

> > (41)

1 1
— N2 =, 2,2
Hy— 2y + 2@ Var
which are in involution. Any other constant of motion can be
expressed in terms of these two motion integrals. For ex-
ample, the total energy or Hamiltoniath and the angular
momentumL of system(37) can be expressed as follows:

H=H,+H,, L=Xy-yx=kyHH,, (42

déy

0.8
0.6
0.4

0.2

dﬁxz{w

PHYSICAL REVIEW EG69, 046105(2004)

px)

P

i
o

X, X

o[- 71+ 70+ ) Ixx

FIG. 4. Stationary probability densitiggx) of displacemenk
andp(x) of velocity X of system(37) with Rayleigh friction model
\ in the case far from equilibrium. The parameters are the same as
h a those in Fig. 1@, ¢ denote the results from simulation of E§7)
and — the analytical results in E(5).

X
— -1 — -1
6, = tan (wx)’ 6, = tan (

According to Eqs(8a and(8b), the following It6 stochastic
differential equations foH,, H,, ¢, and 6, can be obtained
from Eq. (40):

y

-

(43

dH={~ [~ 71+ 7202 + }2 5% + D}dt + \2DxdB,(t),

dH, = {~ [~ y1+ 720 + y?)1§? + D}dt+ 2DydB,(1),

2wXX

e

X2+ (J)2X2 ()'(2+ (,1)2X2)2
5B,
{w_ o=t @+ Py 2y } .
V2 + w?y? (V2 + 0?y?)?
+ S/2+w73(/)2>/2d8y(t). (44)

Let ¢=6,—6,. Following Eq. (19), the averaged Fokker-
Planck equation for Eq40) is

ap d d d 1 &

— =-——lap]l-—lapl- —lap]+ 5~ —5[bup]
wherek is a constant determined by the initial state of the gt J Hx dHy ay J¢ ¢ 2‘9H§
system. 1 & 1 & 1 &

Note that the natural frequencies in thandy directions + Eﬁ[byyp] *33 $ [bgep] + ém[bxyp]
are the same and a resonant relat{@) with k;=1, k; y Ty
=-1, and @Q¢)=0 exists. So, in the case of light friction and P 1
weak stochastic excitations, the stochastic averaging method * 29 H, ¢[b><¢p] * 20H. 9 Hx[byxp]
for quasi-integrable Hamiltonian systems with internal reso- 5 y2
nance introduced in Sec. lll should be applied to Ef). + 2 J [byyp] +} [byp]

Introduce the angle variableg and 6,, 29Hyd ¢ yé 29 ¢ aH, 9
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&2 I\ 1 21
i o —[b,.p], 45 = — v, + (X2 + V) |x2d 6, ,
20¢ﬁHy[ oyP] (45) H. - 2aph), [t v OCHYIlCde,
where
I

a,=(-[- m+ 1C+y) X% +D), b=(2Dx?), = - %2+ Y2) 1y2
= (~[=nt r(x+y9)] ), b= (2DX%) 7H,~ 27DH, Jo [= y2+ 72X+ y7)ly“dé;,

be:bX¢:01
N oHH o 2wy XY XX
a,=(=[- 71+ 7:0¢+y)?+D), by,=(2Dy?), 76 aD(H,+Hy) o [= 71+ 7+ Y] H,  h,/ %
be: y¢:0! (50)

, . Finishing the integrals in Eq50), one obtains the following
o wyy WXX ions:
a,= <_ [— y, + 72(x2+y2)]( - _ ) expressions:

V+o?y? X+ %P
vy XX i 1{ +3 H, + (1+1cos 2¢>H ]
w w. =S T YT S YRk T Y2 5 y |
D T 2, 22|/ dHy D 2 2
(Y +oy)® (X +wX)
2,2 2.2 on 1 3 1
b (2 + 022 (2 + w?y?)? dH, D 2 2
L I\ L HH, sin 26 (51)
= = = — . . =T .
Dy=byy =0, (=57 ] ()d (49 a¢ DY
To complete the averaging operation in E46), introduce  To have an exact solution far, the following compatibility
the following transformation: conditions must be satisfied:
2h, o g .
x=~“Xcos 6, X=12H,sin 6,, P\ I\ , i) __T ,
® dHydH, JdH,dH, dH,d¢d dPIH,
\’m
/ . . 2
y= —wXCOS(d)'l' ax)u y= \’/Z_Hysm (¢+ 9)(), (47) I\ (92)\ (52)

dpaHy, dHy P
which satisfy Eq.(41). The exact stationary solution of the L - .
averaged Fokker-Planck equatietb), if it exists, is of the It is seen that the compatibility conditions in EG2) are

form satisfied spontaneously. Thus, the probability potentialf
Eq. (48) is
P(Hx, Hy, ¢) = C exd = A(H, Hy, #)], (48)
whereC is a normalization constant and the probability PO-\(H,,Hy, ¢) = 1) yi(Hy+H,)
tential N\(Hy,Hy ¢) is the solution of the following three lin- D

ear partial differential equations: 3., ( 1 )
+ | ~(Hy+H)) +{1+_-cos 2p|HH,|.
IN IN Y2 4( X y) 2 2p |Hy y
bxxa— =2D-2a,, by, —~——=2D-2a,

H, dH, (53)

I\ The stationary probability densitg(H,,H,,#) is obtained
b¢¢£ =-2ay. (490 by substituting Eq(53) into Eq.(48) and the stationary prob-
ability density of displacements and velocities, following Eq.
Equation(49) be simplified as follows: (36), is
|
p(X-y-X-Y) =C, EXF{— )\(HX! Hy1 ¢)]HX=(X2+w2x2)/2,Hy=(y2+w2y2)/2,¢=tan‘1(y/wy)—tg‘1(i</wx)a (54)
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whereC, is a normalization constant. The other statistics of 35 [
the stationary motion of the systei37) can then be obtained
from Eq. (54). For example, the marginal stationary prob- !
ability densitiesp(x,y), p(x,y), p(x,X), p(x), andp(X) can be s |
obtained as follows:
o= [ | ey saxas, : .
1 b
p(x!y):f f p(var).(ry)dx dyr 05 -
¢
0= [ | pxysiny oy

FIG. 5. Stationary probability densitiggx) of displacemenk
o o e andp(x) of velocity X of system(37) with Rayleigh friction model
p(x) :J f f p(X, Y, X, y)dx dy dy, in the case tending toward equilibrium. The parametersare
o J e J -1,y=1,w=6,andD=1. @, ¢ denote the results from simulation
of Eq. (37) and — the analytical results in E¢5).

p(x) :f f f p(x,y,xy)dx dy dy (55 interesting to point out that the phenomenological bifurcation
e of system(37) can be studied analytically by using E¢54)
To check the accuracy of the results obtained by using thend(55).
stochastic averaging method, Monte Carlo simulation of the
Langevin equation37) was performed. The sample func- VI. STATIONARY SOLUTIONS FOR SCHIENBEIN-
tions for independent Gaussian white noiggid) and &,(t) GRULER AND ERDMANN FRICTION MODELS
were generated by using the Box-Muller method. Then, the The stochastic averaging method for quasi-intearable
response of the syste(87) was solved numerically by using Hamiltoni ¢ . gl 9 licable t t?] 9
the fourth-order Runge-Kutta method with time step 0.02. amiftonian systems 1S aiso applcablé 1o the Sys@m
The long time solution after 60 000 steps was regarded as t ith o.ther vglqcny-dependent friction modgls. Repl_acmg the
stationary ergodic response and taken to perform the statis Xayleigh fng:t|on model wyth_the followlng Schienbein-
cal analysis for obtaining the probability densities. ruler velocity-dependent friction modgd]:
Figures 1-5 show some numerical results for five mar- T Vo

ginal probability densities of the systef87) in the case of F(VX“+y9) = 70(1 —.2/=.2) (56)
far from equilibrium (y,=1,y,/7,=4) and in the case of Xty
tending toward equilibriun{y,=1,y,/y,=-1). The param- which describes the active motion of different types of cell,
eters are the same as those used in B&l. The validity of  such as granulocytes, monocytes, and neural crest cells, and
the stationary solutio(b4) is verified by the excellent agree- by using the stochastic averaging method for quasi-
ment between the results from the stochastic averagingtegrable Hamiltonian systems, one can obtain the follow-
method and those from digital simulation for both cases. It i9ng joint stationary probability density of syste(®7):

V20
+ 0Yo

p(xiy,xiy) = C eXp |:— %)(HX-}- Hy) 7TD

2
X f VH, sirP6 + H, sirf(6+ qS)dG]

(57)
0 H=0E+023) [ 2,H =2+ 0?y?) [ 2, g=tarm H(ylwy)~tg (K wx)
Similarly, for system(37) with the Erdmann velocity-dependent friction modial]
. . (X2 +\ 2 _ UZ)
FO+ ) = 7 o (59

“(@o/y0) + (C +Y2 = v)
the following joint stationary probability density of the systé®&Y) can be obtained:
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Go

. Yo
1)1 = C __H +H +
P(X,Y,X,Y) exp{ D( x+Hy) "

2m
xf In[do/ ¥o + 2Hy SiNPO+ 2H, Sif(6+ ¢) - vg]de}
0

H,=(x%+w?x?) / 2,Hy:(y2+w2y2) / 2. ¢=tarm (Yl wy)-tg~L(} wx)
(59

It is noted that similar results as shown in Figs. 1-5 can bé&rdmann model, the analytical solutions obtained agree well

obtained for the systert87) with Schienbein-Gruler and Er- with the results from Monte Carlo simulation. It should be

dmann friction models. pointed out that the stochastic averaging method for quasi-
integrable Hamiltonian systems can also be extended to the
study of the motion of swarms of active Brownian particles

VIl. CONCLUSIONS with global coupling and it will be the subject of our future

In the present paper, the stochastic averaging method fotudy-
quasi-integrable Hamiltonian systems has been introduced
briefly and applied to obtain the stationary distribution for
the motion of active Brownian particles. The method can be The work reported in this paper was supported by the
used to deal with a system with different kinds of friction National Natural Science Foundation of China under a key
models both in cases far from equilibrium and tending to-grant No. 10332030 and the special Fund for Doctor Pro-
ward equilibrium. For three velocity-dependent friction mod-grams in Institutions of Higher Learning of China under
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